Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(1)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37793353

RESUMO

We report on the superconducting properties and intermediate resistive steps (IRS) observed in the current-voltage characteristics (IVC) of tungsten meander (MW) structures fabricated using focused ion beam (FIB) technique. Three number of MWs were studied with individual wire widths of 240 nm, 640 nm and 850 nm with superconducting transition temperatures (TC) of 4.5 K, 4.55 K and 4.60 K respectively. The measured normal state resistance values at 8 K for these wires are of ∼182 kΩ, ∼49 kΩ and ∼32 kΩ, respectively as a function of increasing wire widths; are higher than the quantum of resistance (h/4e2=6.45kΩ,his a Planck constant andeis electronic charge) indicating extreme disorder nature of the fabricated samples. The variation of resistance with respect to temperature (forT

2.
ACS Appl Mater Interfaces ; 15(25): 30443-30454, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326513

RESUMO

The development of imaging technology and optical communication demands a photodetector with high responsiveness. As demonstrated by microfabrication and nanofabrication technology advancements, recent progress in plasmonic sensor technologies can address this need. However, these photodetectors have low optical absorption and ineffective charge carrier transport efficiency. Sb2Se3 is light-sensitive material with a high absorption coefficient, making it suitable for photodetector applications. We developed an efficient, scalable, low-cost near-infrared (NIR) photodetector based on a nanostructured Sb2Se3 film deposited on p-type micropyramidal Si (made via the wet chemical etching process), working on photoconductive phenomena. Our results proved that, at the optimized thickness of the Sb2Se3 layer, the proposed Si micropyramidal substrate enhanced the responsivity nearly two times, compared with that of the Sb2Se3 deposited on a flat Si reference sample and a glass/Sb2Se3 sample at 1064 nm (power density = 15 mW/cm2). More interestingly, the micropyramidal silicon-based device worked at 0 V bias, paving a path for self-bias devices. The highest specific detectivity of 2.25 × 1015 Jones was achieved at 15 mW/cm2 power density at a bias voltage of 0.5 V. It is demonstrated that the enhanced responsivity was closely linked with field enhancement due to the Kretschmann configuration of Si pyramids, which acts as hot spots for Si/Sb2Se3 junction. A high responsivity of 47.8 A W-1 proved it suitable for scalable and cost-effective plasmonic-based NIR photodetectors.

3.
Sci Rep ; 13(1): 197, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604468

RESUMO

WTe2 is one of the wonder layered materials, displays interesting overlapping of electron-hole pairs, opening of the surface bandgap, anisotropy in its crystal structure and very much sought appealing material for room temperature broadband photodection applications. Here we report the photoresponse of WTe2 thin films and microchannel devices fabricated on silicon nitride substrates. A clear sharp rise in photocurrent observed under the illumination of visible (532 nm) and NIR wavelengths (1064 nm). The observed phoresponse is very convincing and repetitive for ON /OFF cycles of laser light illumination. The channel length dependence of photocurrent is noticed for few hundred nanometers to micrometers. The photocurrent, rise & decay times, responsivity and detectivity are studied using different channel lengths. Strikingly microchannel gives few orders of greater responsivity compared to larger active area investigated here. The responsivity and detectivity are observed as large as 29 A/W and 3.6 × 108 Jones respectively. The high performing photodetection properties indicate that WTe2 can be used as a broad band material for future optoelectronic applications.

4.
Sci Rep ; 11(1): 832, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436932

RESUMO

Topological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.

5.
J Phys Condens Matter ; 33(8): 085301, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33171442

RESUMO

Milling of 2D flakes is a simple method to fabricate nanomaterial of any desired shape and size. Inherently milling process can introduce the impurity or disorder which might show exotic quantum transport phenomenon when studied at the low temperature. Here we report temperature dependent weak antilocalization (WAL) effects in the sculpted nanowires of topological insulator in the presence of perpendicular magnetic field. The quadratic and linear magnetoconductivity (MC) curves at low temperature (>2 K) indicate the bulk contribution in the transport. A cusp feature in magnetoconductivity curves (positive magnetoresistance) at ultra low (<1 K) temperature and at magnetic field (<1 T) represent the WAL indicating the transport through surface states. The MC curves are discussed by using the 2D Hikami-Larkin-Nagaoka theory. The cross-over/interplay nature of positive and negative magnetoresistance observed in the MR curve at ultra-low temperature. Our results indicate that transport through topological surface states (TSS) in sculpted nanowires of Bi2Te3 can be achieved at mK range and linear MR observed at ∼2 K could be the coexistence of electron transport through TSS and contribution from the bulk band.

6.
ACS Appl Mater Interfaces ; 12(41): 47038-47047, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32957784

RESUMO

The fabrication of a superior-performance ultraviolet (UV) photodetector utilizing graphene quantum dots (GQDs) as a sensitization agent on a ZnO-nanorod/GaN-nanotower heterostructure has been realized. GQD sensitization displays substantial impact on the electrical as well as the optical performance of a heterojunction UV photodetector. The GQD sensitization stimulates charge carriers in both ZnO and GaN and allows energy band alignment, which is realized by a spontaneous time-correlated transient response. The fabricated device demonstrates an excellent responsivity of 3.2 × 103 A/W at -6 V and displays an enhancement of ∼265% compared to its bare counterpart. In addition, the fabricated heterostructure UV photodetector exhibits a very high external quantum efficiency of 1.2 × 106%, better switching speed, and signal detection capability as low as ∼50 fW.

7.
ACS Omega ; 5(24): 14535-14542, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596591

RESUMO

The nanoplasmonic impact of chemically synthesized Au nanoparticles (Au NPs) on the performance of GaN nanostructure-based ultraviolet (UV) photodetectors is analyzed. The devices with uniformly distributed Au NPs on GaN nanostructures (nanoislands and nanoflowers) prominently respond toward UV illumination (325 nm) in both self-powered as well as photoconductive modes of operation and have shown fast and stable time-correlated response with significant enhancement in the performance parameters. A comprehensive analysis of the device design, laser power, and bias-dependent responsivity and response time is presented. The fabricated Au NP/GaN nanoflower-based device yields the highest photoresponsivity of ∼ 380 mA/W, detectivity of ∼ 1010 jones, reduced noise equivalent power of ∼ 5.5 × 10-13 W Hz-1/2, quantum efficiency of ∼ 145%, and fast response/recovery time of ∼40 ms. The report illustrates the mechanism where light interacts with the chemically synthesized nanoparticles guided by the surface plasmon to effectively enhance the device performance. It is observed that the Au NP-stimulated local surface plasmon resonance effect and reduced channel resistance contribute to the augmented performance of the devices. Further, the decoration of low-dimensional Au NPs on GaN nanostructures acts as a detection enhancer with a fast recovery time and paves the way toward the realization of energy-efficient optoelectronic device applications.

8.
Nanotechnology ; 30(40): 405001, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31247608

RESUMO

We report superconducting properties of tungsten meander structures fabricated using the focussed ion beam (FIB) induced technique. Three meander structures with individual line widths of ∼70, ∼300 and ∼450 nm were fabricated for evaluation and comparison of the superconducting properties. The resistance-temperature characteristics of the meanders were measured and analysed down to a temperature of 100 mK. The superconducting properties such as critical temperature (T C) and upper-critical field (H C2) of these wires are in comparison to the reported values of FIB deposited tungsten available in literature. While the normal state resistance increases sharply as the width of the wire decreases, the superconducting transition temperature registered a slight decrease. Significant amount of residual resistance (3.8% of normal state value at 100 mK) was observed for the sample with the lowest width (70 nm). The residual resistance trails as function of temperature was analysed invoking theoretical models governing the phase slip induced dissipations in superconducting nanowires. The results indicated signature of phase slips as the width of the wire decreases: thermally activated phase slips dominant near to the T C and quantum phase slip (QPS) near to T C as well as much below to the T C. The magneto-resistance isotherms indicated quantum phase transitions (QPT); typical of a superconductor-to-insulator transition (SIT) driven by magnetic field. The SIT transition which originates from the intrinsic disorder present in the sample can be tuned by an external parameter such as magnetic field, and can be modelled by standard theories of QPT for quasi 2D or (2 + 1) D XY models. The successful fabrication of meander structures of W using FIB and the demonstration of superconductivity suggest that FIB deposited W can be exploited for many of the technological applications of superconducting nanowires such as superconducting nanowire single photon detectors, bolometers, transition edge sensors and even for quantum current standard employing the QPS phenomenon.

9.
Sci Rep ; 9(1): 7836, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127174

RESUMO

Studies of negative magnetoresistance in novel materials have recently been in the forefront of spintronic research. Here, we report an experimental observation of the temperature dependent negative magnetoresistance in Bi2Te3 topological insulator (TI) nanowires at ultralow temperatures (20 mK). We find a crossover from negative to positive magnetoresistance while increasing temperature under longitudinal magnetic field. We observe a large negative magnetoresistance which reaches -22% at 8 T. The interplay between negative and positive magnetoresistance can be understood in terms of the competition between dephasing and spin-orbit scattering time scales. Based on the first-principles calculations within a density functional theory framework, we demonstrate that disorder (substitutional) by Ga+ ion milling process, which is used to fabricate nanowires, induces local magnetic moments in Bi2Te3 crystal that can lead to spin-dependent scattering of surface and bulk electrons. These experimental findings show a significant advance in the nanoscale spintronics applications based on longitudinal magnetoresistance in TIs. Our experimental results of large negative longitudinal magnetoresistance in 3D TIs further indicate that axial anomaly is a universal phenomenon in generic 3D metals.

10.
Sci Rep ; 9(1): 3804, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846755

RESUMO

The rapid progress in 2D material research has triggered the growth of various quantum nanostructures- nanosheets, nanowires, nanoribbons, nanocrystals and the exotic nature originating through 2D heterostructures has extended the synthesis of hybrid materials beyond the conventional approaches. Here we introduce simple, one step confined thin melting approach to form nanostructures of TI (topological insulator) materials, their hybrid heterostructures with other novel 2D materials and their scalable growth. The substrate and temperature dependent growth is investigated on insulating, superconducting, metallic, semiconducting and ferromagnetic materials. The temperature dependent synthesis enables the growth of single, few quintuples to nanosheets and nanocrystals. The density of nanostructure growth is seen more on fabricated patterns or textured substrates. The fabricated nanostructure based devices show the broadband photodetection from ultraviolet to near infrared and exhibit high photoresponsivity. Ultimately, this unique synthesis process will give easy access to fabricate devices on user friendly substrates, study nanostructures and scalable growth will enable their future technology applications.

11.
Sci Rep ; 8(1): 17237, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467364

RESUMO

Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaev's one-dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator (Bi2Se3) nanowires proximity-coupled to conventional s-wave superconducting (W) electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale-up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long-range proximity induced superconducting order with high IcRN product in long Bi2Se3 junctions. Large upper critical magnetic fields exceeding the Chandrasekhar-Clogston limit suggests the existence of robust superconducting order with spin-triplet cooper pairing. An unconventional inverse dependence of IcRN product on the width of the nanowire junction was also observed.

12.
ACS Omega ; 3(2): 2304-2311, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458530

RESUMO

Surface-engineered nanostructured nonpolar (112̅0) gallium nitride (GaN)-based high-performance ultraviolet (UV) photodetectors (PDs) have been fabricated. The surface morphology of a nonpolar GaN film was modified from pyramidal shape to flat and trigonal nanorods displaying facets along different crystallographic planes. We report the ease of enhancing the photocurrent (5.5-fold) and responsivity (6-fold) of the PDs using a simple and convenient wet chemical-etching-induced surface engineering. The fabricated metal-semiconductor-metal structure-based surface-engineered UV PD exhibited a significant increment in detectivity, that is, from 0.43 to 2.83 (×108) Jones, and showed a very low noise-equivalent power (∼10-10 W Hz-1/2). The reliability of the nanostructured PD was ensured via fast switching with a response and decay time of 332 and 995 ms, which were more than five times faster with respect to the unetched pyramidal structure-based UV PD. The improvement in device performance was attributed to increased light absorption, efficient transport of photogenerated carriers, and enhancement in conduction cross section via elimination of recombination/trap centers related to defect states. Thus, the proposed method could be a promising approach to enhance the performance of GaN-based PD technology.

13.
Sci Rep ; 7(1): 17911, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263434

RESUMO

Due to miniaturization of device dimensions, the next generation's photodetector based devices are expected to be fabricated from robust nanostructured materials. Hence there is an utmost requirement of investigating exotic optoelectronic properties of nanodevices fabricated from new novel materials and testing their performances at harsh conditions. The recent advances on 2D layered materials indicate exciting progress on broad spectral photodetection (BSP) but still there is a great demand for fabricating ultra-high performance photodetectors made from single material sensing broad electromagnetic spectrum since the detection range 325 nm-1550 nm is not covered by the conventional Si or InGaAs photodetectors. Alternatively, Bi2Te3 is a layered material, possesses exciting optoelectronic, thermoelectric, plasmonics properties. Here we report robust photoconductivity measurements on Bi2Te3 nanosheets and nanowires demonstrating BSP from UV to NIR. The nanosheets of Bi2Te3 show the best ultra-high photoresponsivity (~74 A/W at 1550 nm). Further these nanosheets when transform into nanowires using harsh FIB milling conditions exhibit about one order enhancement in the photoresponsivity without affecting the performance of the device even after 4 months of storage at ambient conditions. An ultra-high photoresponsivity and BSP indicate exciting robust nature of topological insulator based nanodevices for optoelectronic applications.

14.
Sci Rep ; 7(1): 7825, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798385

RESUMO

We report the experimental observation of variable range hopping conduction in focused-ion-beam (FIB) fabricated ultra-narrow nanowires of topological insulator (Bi2Se3). The value of the exponent (d + 1)-1 in the hopping equation was extracted as [Formula: see text]for different widths of nanowires, which is the proof of the presence of Efros-Shklovskii hopping transport mechanism in a strongly disordered system. High localization lengths (0.5 nm, 20 nm) were calculated for the devices. A careful analysis of the temperature dependent fluctuations present in the magnetoresistance curves, using the standard Universal Conductance Fluctuation theory, indicates the presence of 2D topological surface states. Also, the surface state contribution to the conductance was found very close to one conductance quantum. We believe that our experimental findings shed light on the understanding of quantum transport in disordered topological insulator based nanostructures.

15.
Sci Rep ; 7(1): 881, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408755

RESUMO

The elemental Nb is mainly investigated for its eminent superconducting properties. In contrary, we report of a relatively unexplored property, namely, its superior optoelectronic property in reduced dimension. We demonstrate here that nanostructured Nb thin films (NNFs), under optical illumination, behave as room temperature photo-switches and exhibit bolometric features below its superconducting critical temperature. Both photo-switch and superconducting bolometric behavior are monitored by its resistance change with light in visible and near infrared (NIR) wavelength range. Unlike the conventional photodetectors, the NNF devices switch to higher resistive states with light and the corresponding resistivity change is studied with thickness and grain size variations. At low temperature in its superconducting state, the light exposure shifts the superconducting transition towards lower temperature. The room temperature photon sensing nature of the NNF is explained by the photon assisted electron-phonon scattering mechanism while the low temperature light response is mainly related to the heat generation which essentially changes the effective temperature for the device and the device is capable of sensing a temperature difference of few tens of milli-kelvins. The observed photo-response on the transport properties of NNFs can be very important for future superconducting photon detectors, bolometers and phase slip based device applications.

16.
J Phys Condens Matter ; 29(11): 115602, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28170351

RESUMO

In the last few years, research based on topological insulators (TIs) has been of great interest due to their intrinsic exotic fundamental properties and potential applications such as quantum computers or spintronics. The fabrication of TI nanodevices and the study of their transport properties has mostly focused on high quality crystalline nanowires or nanoribbons. Here, we report a robust approach to Bi2Se3 nanowire formation from deposited flakes using an ion beam milling method. Fabricated Bi2Se3 nanowire devices were employed to investigate the robustness of the topological surface state (TSS) to gallium ion doping and any deformation in the material due to the fabrication tools. We report on the quantum oscillations in magnetoresistance (MR) curves under the parallel magnetic field. The resistance versus magnetic field curves are studied and compared with Aharonov-Bohm (AB) interference effects, which further demonstrate transport through the TSS. The fabrication route and observed electronic transport properties indicate clear quantum oscillations, and these can be exploited further in studying the exotic electronic properties associated with TI-based nanodevices.

17.
J Phys Condens Matter ; 29(7): 07LT01, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28035087

RESUMO

Since the discovery of topological insulators (TIs), there are considerable interests in demonstrating metallic surface states (SS), their shielded robust nature to the backscattering and study their properties at nanoscale dimensions by fabricating nanodevices. Here we address an important scientific issue related to TI whether one can clearly demonstrate the robustness of topological surface states (TSS) to the presence of disorder that does not break any fundamental symmetry. The simple straightforward method of FIB milling was used to synthesize nanowires of Bi2Se3 which we believe is an interesting route to test robustness of TSS and the obtained results are new compared to many of the earlier papers on quantum transport in TI demonstrating the robustness of metallic SS to gallium (Ga) doping. In the presence of perpendicular magnetic field, we have observed the co-existence of Shubnikov-de Haas oscillations and linear magnetoresistance (LMR), which was systematically investigated for different channel lengths, indicating the Dirac dispersive surface states. The transport properties and estimated physical parameters shown here demonstrate the robustness of SS to the fabrication tools triggering flexibility to explore new exotic quantum phenomena at nanodevice level.

18.
Sci Rep ; 6: 22939, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965055

RESUMO

We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 µm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

19.
Sci Rep ; 6: 19138, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751499

RESUMO

Recently, very exciting optoelectronic properties of Topological insulators (TIs) such as strong light absorption, photocurrent sensitivity to the polarization of light, layer thickness and size dependent band gap tuning have been demonstrated experimentally. Strong interaction of light with TIs has been shown theoretically along with a proposal for a TIs based broad spectral photodetector having potential to perform at the same level as that of a graphene based photodetector. Here we demonstrate that focused ion beam (FIB) fabricated nanowires of TIs could be used as ultrasensitive visible-NIR nanowire photodetector based on TIs. We have observed efficient electron hole pair generation in the studied Bi2Se3 nanowire under the illumination of visible (532 nm) and IR light (1064 nm). The observed photo-responsivity of ~300 A/W is four orders of magnitude larger than the earlier reported results on this material. Even though the role of 2D surface states responsible for high reponsivity is unclear, the novel and simple micromechanical cleavage (exfoliation) technique for the deposition of Bi2Se3 flakes followed by nanowire fabrication using FIB milling enables the construction and designing of ultrasensitive broad spectral TIs based nanowire photodetector which can be exploited further as a promising material for optoelectronic devices.

20.
Nanoscale ; 6(14): 8192-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24926960

RESUMO

We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...